
李 琪,1978年9月生,女,博士?,F(xiàn)任中國(guó)科學(xué)院沈陽(yáng)應(yīng)用生態(tài)研究所研究員、博士生導(dǎo)師。主要從事土壤線(xiàn)蟲(chóng)生態(tài)學(xué)研究。2003年和2006年分別赴以色列巴依蘭大學(xué)和荷蘭瓦格寧根大學(xué)進(jìn)行合作研究。2012年獲得公派留學(xué)資助前往荷蘭生態(tài)研究所學(xué)習(xí)。2007年獲得中國(guó)科學(xué)院院長(zhǎng)優(yōu)秀獎(jiǎng)。在國(guó)內(nèi)外學(xué)術(shù)刊物中發(fā)表論文80余篇,其中SCI收錄50余篇。現(xiàn)任中國(guó)生態(tài)學(xué)學(xué)會(huì)農(nóng)業(yè)生態(tài)學(xué)專(zhuān)業(yè)委員會(huì)委員、《生態(tài)學(xué)雜志》編委、《Soil Ecology Letters》編委。先后承擔(dān)中科院國(guó)際合作伙伴重點(diǎn)項(xiàng)目、中科院戰(zhàn)略性先導(dǎo)科技專(zhuān)項(xiàng)(B類(lèi))子課題和中國(guó)科學(xué)院知識(shí)創(chuàng)新工程重要方向項(xiàng)目等多項(xiàng)科研項(xiàng)目,重點(diǎn)開(kāi)展土壤微食物網(wǎng)對(duì)全球變化的響應(yīng)及反饋機(jī)制研究。
學(xué)習(xí)經(jīng)歷:
1996.9~2000.7 東北師范大學(xué)生態(tài)學(xué)專(zhuān)業(yè),獲學(xué)士學(xué)位
2000.9~2003.7 中科院沈陽(yáng)應(yīng)用生態(tài)研究所生態(tài)學(xué)專(zhuān)業(yè),獲碩士學(xué)位
2004.9~2007.7 中科院沈陽(yáng)應(yīng)用生態(tài)研究所土壤學(xué)專(zhuān)業(yè),獲博士學(xué)位
國(guó)內(nèi)工作經(jīng)歷:
2003.7~2005.9 中國(guó)科學(xué)院沈陽(yáng)應(yīng)用生態(tài)研究所, 任研究實(shí)習(xí)員
2005.9~2009.10 中國(guó)科學(xué)院沈陽(yáng)應(yīng)用生態(tài)研究所, 任助理研究員
2009.11~2012.10 中國(guó)科學(xué)院沈陽(yáng)應(yīng)用生態(tài)研究所, 任副研究員
2012.11~至今 中國(guó)科學(xué)院沈陽(yáng)應(yīng)用生態(tài)研究所, 任研究員
國(guó)際交流合作:
2003.11~2004.2 赴以色列巴依蘭大學(xué)開(kāi)展土壤生態(tài)學(xué)方面的合作研究
2006. 4~ 2006.5 赴荷蘭瓦格寧根大學(xué)線(xiàn)蟲(chóng)學(xué)實(shí)驗(yàn)室開(kāi)展合作研究
2009.7.12~15 赴美國(guó)參加土壤生態(tài)學(xué)會(huì)和線(xiàn)蟲(chóng)學(xué)會(huì)年會(huì)
2012.3.1~8.31 赴荷蘭生態(tài)研究所高級(jí)訪(fǎng)問(wèn)學(xué)者
主持項(xiàng)目:
1. 國(guó)家自然科學(xué)基金面上項(xiàng)目“營(yíng)養(yǎng)級(jí)聯(lián)介導(dǎo)的土壤微食物網(wǎng)對(duì)資源養(yǎng)分限制的響應(yīng)和適應(yīng)機(jī)制”(編號(hào):32271718),2023-2026
2. 中國(guó)科學(xué)院國(guó)際伙伴計(jì)劃對(duì)外合作重點(diǎn)項(xiàng)目 “土壤微食物網(wǎng)介導(dǎo)的植物-土壤反饋在退化草地恢復(fù)中的作用機(jī)制”(編號(hào):151221KYSB20200014),2021-2023
3. 中國(guó)科學(xué)院王寬誠(chéng)率先人才計(jì)劃-盧嘉錫國(guó)際團(tuán)隊(duì)課題“東北黑土區(qū)土壤微食物網(wǎng)對(duì)土壤有機(jī)碳穩(wěn)定和固碳策略的影響研究”(編號(hào):GJTD-2019-10),2020-2022
4. 國(guó)家重點(diǎn)研發(fā)計(jì)劃子課題“東北地區(qū)主要耕作模式影響作物主要有害生物發(fā)生的機(jī)制”(編號(hào):2017YFD0200602-3),2017-2020
5. 國(guó)家自然科學(xué)基金面上項(xiàng)目“土壤生物對(duì)退化草地生態(tài)系統(tǒng)恢復(fù)的影響機(jī)制”(編號(hào):41877047),2019-2022
6. 國(guó)家自然科學(xué)基金面上項(xiàng)目“氮沉降背景下凋落物化學(xué)計(jì)量比值的改變對(duì)土壤微食物網(wǎng)的影響”(編號(hào):31570519),2016-2019
7. 中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專(zhuān)項(xiàng)(B類(lèi)),子課題“土壤微生物群落對(duì)調(diào)落物化學(xué)計(jì)量變化的響應(yīng)機(jī)制”(編號(hào):XDB15010402),2014-2019
8. 國(guó)家自然科學(xué)基金面上項(xiàng)目“開(kāi)放式臭氧濃度升高對(duì)不同敏感型小麥土壤線(xiàn)蟲(chóng)群落的影響”(編號(hào):31270487),2013-2016
9. 國(guó)家973計(jì)劃課題,子課題“農(nóng)田系統(tǒng)養(yǎng)分虧缺、平衡和盈余狀態(tài)下土壤生物的響應(yīng)機(jī)制與判定分析”(編號(hào):2007CB109307),2007-2011
10. 國(guó)家自然科學(xué)基金青年項(xiàng)目“線(xiàn)蟲(chóng)對(duì)銅鋅污染土壤生物指示作用的研究”(編號(hào):30600087),2007-2009
代表性文章:
1. Kou XC, Morrien E, Tian YJ, Zhang XK*, Lu CY, Xie HT, Liang WJ, Li Q*, Liang C. 2023. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology. 29: 4069-4080
2. Zhang GZ#, Yang H#, Zhang WP, Bezemer T. Martijn, Liang WJ*, Li Q*, Li L*. 2023. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agriculture Ecosystems and Environment. 355:108595
3. Li YH, Han X, Li B, Li YB, Du XF, Sun YX, Li Q*, Bezemer TM. 2023. Soil addition improves multifunctionality of degraded grasslands through increasing fungal richness and network complexity. Geoderma. 437:116607
4. Li B, Li YB*, Fanin Nicolas, Veen (Ciska) G.F.,Han X, Du XF, Li YH, Sun YX, Li Q*. 2023. Stoichiometric imbalances between soil microorganisms and their resources regulate litter decomposition. Functional Ecology. 37: 3136-3149
5. Li YB# *, Du XF#, Su XL, Han X, Liang WJ, Wang ZW, Bruelheide H, Bezemer TM, Li Q*. 2023. Local-scale soil nematode diversity in a subtropical forest depends on the phylogenetic and functional diversity of neighbor trees. Plant and Soil. 486:441-454
6. Sun YX#, Du XF#, Li YB, Han X, Fang S, Geisen S, Li Q*. 2023. Database and primer selections affect nematode community composition under different vegetations of Changbai Mountain. Soil Ecology Letters. 5(1):142-150
7. Liu HW, Du XF, Li YB, Han X, Li B, Zhang XK, Li Q*, Liang WJ*. 2022. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. Journal of Cleaner Production. 347:131323
8. Li B#, Li YB#, Fanin N, Han X, Du XF, Liu HW, Li YH, Li Q*. 2022. Adaptation of soil micro-food web to elemental limitation: evidence from the forest-steppe ecotone. Soil Biology and Biochemistry. 170:108698
9. Xiong D#, Wei CZ#, Wang XG, L XT, Fang S, Li YB*, Wang XB, Liang WJ, Han XG, Bezemer TM, Li Q*. 2021. Spatial patterns and ecological drivers of soil nematode -diversity in natural grasslands vary among vegetation types and trophic position. Journal of Animal Ecology. 90:1367-1378
10. Xiong D#, Wei CZ#, Wubs ERJ#, Veen GFC, Liang WJ, Wang XB, Li Q*, van der Putten WH, Han XG. 2020. Non-linear response of soil nematode community composition to increasing aridity. Global Ecology and Biogeography. 29:117–126
11. Li YB, G.F.(Ciska) Veen, W.H.Gera Hol, Simon Vandenbrande, S.Emilia Hannula, Freddy C. ten Hooven, Li Q*, Liang WJ, T. Martijn Bezemer. 2020. ‘Home’ and ‘a(chǎn)way’ litter decomposition depends on the size fractions of the soil biotic community. Soil Biology and Biochemistry.144:107783
12. Du XF#, Li YB#, Han X, Wasim Ahmad, Li Q*. 2020. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology. 152:103562
13. Li YB, Bezemer TM, Yang JJ, L XT, Li XY, Liang WJ*, Han XG, Li Q*. 2019. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry. 130:33-42
14. Cui SY#, Liang SW#, Zhang XK, Li YB, Liang WJ*, Sun LJ, Wang JK, Bezemer TM, Li Q*. 2018. Long-term fertilization management effects the C utilization from crop residues by the soil micro-food web. Plant and Soil. 429:335-348
15. Kou XC#, Su TQ#, Ma NN, Li Q*, Wang P*, Wu ZF, Liang WJ, Cheng WX. 2018. Soil micro-food web interactions and rhizosphere priming effect. Plant and Soil. 432:129-142
16. Li YB, Li Q*, Yang JJ, L XT, Liang WJ*, Han XG, Bezemer TM. 2017. Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology. 31: 1792-1801
17. Li Q*, Yang Y, Bao XL, Zhu JG, Liang WJ*, Bezemer TM . 2016. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system. Agriculture, Ecosystems & Environment. 232:85–92
18. Li Q*, Yang Y, Bao XL, Liu F, Liang WJ*, Zhu JG, Bezemer TM , van der Putten WH. 2015. Legacy effects of elevated ozone on soil biota and plant growth. Soil Biology & Biochemistry. 91:50-57
19. Zhang SX, Li Q*, L Y, Sun XM, Jia SX, Zhang XP, Liang WJ*. 2015. Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil & Tillage Research. 149:46-52
20. Bao XL, Li Q*, Hua JF, Zhao TH, Liang WJ. 2014. Interactive effects of elevated Ozone and UV-B radiation on soil nematode diversity. Ecotoxicology. 23:11-20
21. Li Q*, Bai HH, Liang WJ*, Xia JY, Wan SQ, van der Putten WH. 2013. Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe. PLoS ONE. 8(3): e60441
22. Zhang SX, Li Q*, L Y, Zhang XP, Liang WJ*. 2013. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology & Biochemistry. 62:147-156
23. Li Q, Bao XL, Lu CY, Zhang XK, Zhu JG, Jiang Y, Liang WJ*. 2012. Soil microbial food web responses to free-air ozone enrichment depended on the ozone-tolerance of wheat cultivars. Soil Biology & Biochemistry. 47:27-35
24. Zhang XK#, Li Q#, Zhu AN, Liang WJ*, Zhang JB, Steinberger Y. 2012. Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators. 13(1): 75-81
25. Li Q, Jiang Y, Liang WJ*, Lou YL, Zhang EP, Liang CH. 2010. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology. 46(1):111-118
26. Hao W, Li Q*, Zhang JN, Jiang Y, Liang WJ. 2010. Utility of nematode Acrobeloides nanus for assessing subacute toxicity of heavy metals. Environmental Monitoring and Assessment. 164(1-4):273-289
27. Li Q, Xu CG, Liang WJ*, Zhong S, Zheng XH, Zhu JG. 2009. Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO
28. Li Q, Jiang Y, Liang WJ*. 2009. Nematode diversity in Phaeozem Agroecosystems of Northeast China. Pedosphere. 19(5): 597-605
29. Li Q, Liang WJ*, Jiang Y, Shi Y, Zhu JG, Neher DA. 2007. Effect of elevated CO2 and N fertilization on soil nematode abundance and diversity in a wheat field. Applied Soil Ecology. 36: 63-69
30. Li Q, Jiang Y, Liang WJ*. 2006. The effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. Journal of Environmental Sciences. 18(2): 323-328
31. Li Q, Mayzlish E, Pen-Mouratov S, Shamir I, Sternberg M, Steinberger Y*. 2005. Impact of grazing on soil biota in a Mediterranean grassland. Land Degradation & Development. 16(6): 581-592
32. Li Q, Liang WJ*, Jiang Y, Zhu JG, Kong CH. 2005. Effect of free-air CO2 enrichment on nematode communities in a Chinese farmland ecosystem. Journal of Environmental Sciences. 17(1): 72-75